구글


페르마 마지막 정리 ▶Book

페르마의 마지막 정리
사이먼 싱 지음, 박병철 옮김 / 영림카디널
나의 점수 : ★★★★

학창시절 그렇게 싫고 어렵고 귀찮은 수학이 왜 이렇게 재밌게 느껴지는지 모르겠지만 소설도 아닌것이 긴장감도 생기고 전기도 아닌것이 세기의 수학적 천재들을 대부분을 등장시키고 수필도 아닌것이 가슴 찡~한 감동도 주고 경제서적도 아닌것이 나에게 수리적 향상에 도움까지 준 그런 책이다... 공간이 없어 더이상의 설명은 생략하도록 하겠다 ^^;;

* 재밌는 수학적 증명 보로가기


덧글

  • 박승은 2009/06/24 01:09 # 삭제 답글

    센스 있으시군요ㅋㅋ
  • 토리 2009/06/24 13:54 # 답글

    감사합니다..
  • 이재율 2010/01/28 08:52 # 답글

    4CT& 페르마 정리 증명 심사오류 내부감사 직무유기 방치
    아펠과 하켄의 1976 년경 4색 구분 정리 증명은 1200시간 컴퓨터작업이 필요하고, 와일즈의 1997 년경 페르마 정리 증명은 200 쪽 방대한 분량으로서, 간단명료한 증명 문제가 여전히 남아 있으며, 우리의 간명하고 완벽한 4색 구분 정리 증명과 페르마 정리 증명을 부인하는 수학자는 국내외에 아무도 없다.
    심사의견 전체 오류임을 입증하는 다음 두 가지를 조사하라. 교육과학기술부 산하 공익법인인 대한수학회의 반례를 요구하는 방법도 있고, 수학 기초지식을 가진 제3자에게 감정 의뢰할 수도 있을 것이다.
    첫째, 다음 세 가지 공식들은 모든 피타고라스 수를 구할 수 있다.
    X=(2AB)1/2+A, Y=(2AB)1/2+B, Z=(2AB)1/2+A+B
    상기 공식은 c2=A=Z-Y, 2d2=B=Z-X 일 때 X=2cd+c2, Y=2cd+2d2, Z=2cd+c2+2d2 같이 된다.
    위 공식은 c+d=r 일 때 X=r2-d2, Y=2rd, Z=r2+d2 같은 기존 공식이 된다.
    둘째, [2{(n-1)/n}+……+2(2/n)+2(1/n)](자연수){(n-2)/n} 과 (자연수)/(무리수) 는 항상 무리수가 된다.
    2006.3.3. 투고논문에 대한 2006.6.12. 심사의견이 전체적인 오류임을 지적하며 공익법인 내부감사를 의뢰하였으나 부당업무에 대한 감사도 아니하고 회신조차 아니 함에도 주무관청이 이를 방치하고 있다.
    * * * 09.11.17. 감사원장 조치내용 * * *
    “귀하께서는 감사원에 민원 (접수번호 제2009-08868, 08881, 08955호)를 제출하셨습니다. 검토결과, 위 민원은 교육과학기술부에서 조사할 사항으로 판단되어 교육과학기술부로 하여금 이를 조사 처리하고 그 결과를 귀하께 회신하도록 하였음을 알려 드립니다.”
    * * * 06.6.12.이후 공익법인 부당업무 * * *
    첫째, 논문심사의견 전체오류이며 편집장이 잘못된 주장만 반복하고 07.1.5.이후 회신도 없다.
    둘째, 부당업무 고발에도 자체 내부 감사를 실행하지 아니 한 잘못을 하고 회신도 없다.
    셋째, 주무관청의 성의를 가지고 답변하라는 요청도 무시하는 잘못을 하고 회신도 없다.
    4색 구분 정리 증명과 페르마 정리 증명 요약
    4색 구분 정리 증명
    [1] 한 점에 접하는 모든 지역들은 3색으로 충분히 구분된다.
    [증명] 한 점에 접하는 지역들 중에서 한 지역을 선택할 때, 이 선택된 지역에 접하는 주변의 모든 지역들은 2색으로 충분히 구분되기 때문이다.
    [2] 한 지역에 접하는 모든 지역들은 3색으로 충분히 구분된다.
    [증명] 한 지역 내의 한 점과 주변 지역들의 경계선들이 한 지역의 경계선과 만나는 점들을 연결할 때, 이 지역들은 결국 한 점에 접하는 지역들과 마찬가지로서 3색으로 충분히 구분되기 때문이다.
    [3] 한 지역과 한 지역에 접하는 주변의 모든 지역들을 구분함에는 4색으로 충분하다. 여기에서, 한 지역은 모든 모양의 무수한 지역들을 포함할 수 있다.
    [증명] 한 지역에 접하는 주변의 모든 지역들은 3색으로 충분히 구분되기 때문이다.
    2 가지 방법의 페르마 정리 증명
    Xn+Yn=Zn
    A=Z-Y, B=Z-X
    X=G(AB)1/n+A, Y=G(AB)1/n+B, Z=G(AB)1/n+A+B, X+Y-Z=G(AB)1/n
    {G(AB)1/n+A}n+{G(AB)1/n+B}n={G(AB)1/n+A+B}n
    n=1 일 때, G=0 이고, n=2 일 때, G=21/2>0 임.
    X=(2AB)1/2+A, Y=(2AB)1/2+B, Z=(2AB)1/2+A+B
    c2=A=Z-Y, 2d2=B=Z-X 일 때,
    X=2cd+c2, Y=2cd+2d2 and Z=2cd+c2+2d2
    c+d=e 일 때, X=e2-d2, Y=2ed, Z=e2+d2.
    페르마정리 증명 제1방법
    Xn+Yn=Zn
    (Xn/2)2+(Yn/2)2=(Zn/2)2
    a=Zn/2-Yn/2, b=Zn/2-Xn/2
    {G(ab)1/2+a}2+{G(ab)1/2+b}2={G(ab)1/2+a+b}2
    G=21/2>0
    Xn/2=(2ab)1/2+a, Yn/2=(2ab)1/2+b, Zn/2=(2ab)1/2+a+b
    Xn={(2ab)1/2+a}2, Yn={(2ab)1/2+b}2, Zn={(2ab)1/2+a+b}2
    홀수 n 에서 X, Y 와 Z 가 자연수일 때, 위식의 Xn, Yn 과 Zn 는 자연수이지만, 우변의 {(2ab)1/2+a}2, {(2ab)1/2+b}2, {(2ab)1/2+a+b}2 은 자연수가 될 수 없는 모순이 발생함으로 X, Y 와 Z 는 자연수가 될 수 없다. 그러나 짝수 n 에서는 위와 같은 모순이 발생하지 않는다. 한편, 짝수 n 에서는 모든 피타고라스 수가 거듭제곱이 될 수 없음으로 자연수 해를 가질 수가 없는 것이다.
    페르마정리 증명 제2방법
    {G(AB)1/n+A}n+{G(AB)1/n+B}n={G(AB)1/n+A+B}n
    위 식에서 A=B 일 때, G=[{2(n-2)/n+…+21/n+1}n{2A(n-2)}]1/n 을 구할 수가 있고,
    상기의 식들을 이용하여, 모든 자연수 A, B에서
    G(AB)1/n 이 절대로 자연수가 될 수 없음이 증명된다.
    [증명인: 이재율과 이유진]
  • 토리 2010/01/31 21:43 #

    헉..넘 어렵다...암튼 잘못된거라 말씀하시는거죠??
  • 이재율 2010/03/07 03:53 # 답글

    과학 대 수학, 교육 대 훈련, 진리 대 정의, 선행 대 악행 등의 유사성과 상이점을 숙고하라.
    4열 종대로 서 있던 군인들 중에 한 명이 이탈한 후 남은 군인들이 정사각형 대열로 섰다면 원래 군인들이 몇 명인지 숙고하라.
    식 P(P+1)(P+2) 은 P 가 자연수일 때 거듭제곱 못됨을 증명하긴 쉬우나 기약분수일 때는 증명이 어려우니 숙고하라.
    청탁: 재택 알바 최미나 010-7919-8020 .
댓글 입력 영역